e的定义

时间:2024-04-11 09:51:35编辑:苗木君

e,作为数学常数,是自然对数函数的底数。有时称它为欧拉数,以瑞士数学家欧拉命名也有时叫纳皮尔常数,以纪念苏格兰数学家约翰·纳皮尔引进对数。约翰·纳皮尔于1618年出版的对数著作附录中的一张表第一次提到常数e。e的意义就是自然增长的极限,是在单位时间内,持续的翻倍增长所能达到的极限值。

自然数e的由来和意义

定义

e是自然对数的底数,是一个无限不循环小数,其值是2.71828...,它是当n→∞时,(1+1/n)n的极限

范围

随着n的增大,底数越来越接近1,而指数趋向无穷大,那结果趋向于2.71828

应用

e在数学中是代表一个数的符号,其实还不限于数学领域。在大自然中,建构,呈现的形状,利率或者双曲线面积及微积分教科书、伯努利家族等都离不开e的身影。

自然数e的由来和意义

e作为数学常数,是自然对数函数的底数。有时称它为欧拉数,是以瑞士数学家欧拉命名也有时叫纳皮尔常数,以纪念苏格兰数学家约翰·纳皮尔引进对数。

上一篇:实矩阵

下一篇:广府